Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-36740170

ABSTRACT

Urbanization is characterized by rapid environmental changes such as an increase in building surface, in pollution, or a decrease in invertebrate abundance. For many bird species, morphological and physiological differences have been observed between urban and rural individuals that seem to reflect a negative impact of urban life on the health and fitness of individuals. Studies on passerine birds also showed important differences between populations and species in their responses to the urban environment. We propose to test physiological differences between urban and forest individuals over 3 years to understand whether the observed patterns are constant or subject to variations across years. For this purpose, we assessed the health parameters of adults and fledgling of great tits, Parus major, living in an urban and in a forest site in the Eurometropole of Strasbourg, for three years. Bird health was estimated with morphological parameters (body condition and size) and also with physiological parameters (oxidative status and telomere length). Our results showed lower body condition of urban fledglings regardless of the year, but no site effects on telomere length. On the contrary, for adult breeders, urban individuals had longer telomeres than forest ones except for one year which coincide with bad weather conditions during reproduction where no difference was detected. Urban birds also had higher antioxidant capacity whatever the years. These results suggest that cities act as a filter in which only good quality individuals survive and achieve successful reproduction regardless of year, whereas in the forest the selection occurs only during harsh weather years.


Subject(s)
Forests , Passeriformes , Humans , Animals , Passeriformes/physiology , Cities , Urbanization , Telomere , Ecosystem
2.
Ecotoxicol Environ Saf ; 193: 110357, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32105946

ABSTRACT

Trace metal elements are significant stressors in urban areas. Their harmful effects on physiological parameters are demonstrated, but current laboratory studies are not representative of wild chronic exposure to a trace metal cocktail. Calcium can reduce the accumulation and toxicity of several metals, but soil acidification in cities leads to a decrease in bioavailability of this element. The objective of this study was to investigate the accumulation and toxicity of a trace metal cocktail representative of urban exposure on passerine birds, and test the importance of calcium availability on these toxic effects. We exposed zebra finches (Taeniopygia guttata) to a cocktail of seven metals and one metalloid in drinking water, with or without calcium supplementation. We monitored the concentration of metals in the blood and feathers, and their effects on oxidative status and telomere length. The metal cocktail led to higher concentration of all elements in the feathers, and of arsenic and lead in the blood. Birds with a higher concentration of cadmium, arsenic and lead in the feathers had shorter telomeres, but no impact of the cocktail was detected on oxidative status. Birds of the 'calcium' group and the 'calcium and metal' group accumulated higher concentrations of zinc, chromium and nickel in feathers. The 'calcium and metal' group also accumulated lower concentrations of arsenic and lead in feathers compared to the 'metal' group. Our results suggest that chronic exposure to a cocktail of metals at low concentrations has deleterious effects on birds, which can be limited through calcium intake.


Subject(s)
Calcium/pharmacology , Metals, Heavy/toxicity , Animals , Arsenic/blood , Arsenic/pharmacokinetics , Cadmium/pharmacokinetics , Calcium/administration & dosage , Chromium/pharmacokinetics , Cities , Dietary Supplements , Feathers/chemistry , Finches , Lead/blood , Lead/pharmacokinetics , Male , Metals, Heavy/blood , Nickel/pharmacokinetics , Telomere Shortening/drug effects , Trace Elements/pharmacokinetics , Trace Elements/toxicity , Zinc/analysis
3.
IEEE Trans Vis Comput Graph ; 19(11): 1820-32, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24029903

ABSTRACT

The emergence of very large hierarchies that result from the increase in available data raises many problems of visualization and navigation. On data sets of such scale, classical graph drawing methods do not take advantage of certain human cognitive skills such as shape recognition. These cognitive skills could make it easier to remember the global structure of the data. In this paper, we propose a method that is based on the use of nested irregular shapes. We name it GosperMap as we rely on the use of a Gosper Curve to generate these shapes. By employing human perception mechanisms that were developed by handling, for example, cartographic maps, this technique facilitates the visualization and navigation of a hierarchy. An algorithm has been designed to preserve region containment according to the hierarchy and to set the leaves' sizes proportionally to a property, in such a way that the size of nonleaf regions corresponds to the sum of their children's sizes. Moreover, the input ordering of the hierarchy's nodes is preserved, i.e., the areas that represent two consecutive children of a node in the hierarchy are adjacent to one another. This property is especially useful because it guarantees some stability in our algorithm. We illustrate our technique by providing visualization examples of the repartition of tax money in the US over time. Furthermore, we validate the use of the GosperMap in a professional documentation context and show the stability and ease of memorization for this type of map.

SELECTION OF CITATIONS
SEARCH DETAIL
...